

USER'S GUIDE FOR THE

NET/82™ SINGLE BOARD COMPUTER

(PRELIMINARY)

COPYRIGHT C 1981, 1982, MuSYS CORP,

January 4, 1981

TM - NET/82 and NET/80 are trademarks of MuSYS Corp.

SECTION 1 INTRODUCTION

SECTION 1.0 - INTRODUCTION

 The NET/82 Single Board Computer is another member of the
MuSYS family of products designed to give minicomputer throughput

rates using microcomputer components. This is achieved by

technologies variously referred to as Multi-processing,
Distributed Processing, and Networking. While there is some
feasibility in a single user having the ability to spin off

detached jobs into various processors, the primary demand for

this type of architecture arises from requirements for multi-user
computers. The two primary reasons leading to a decision in

favor of a multi-user computer are a desire to minimize the need
for costly peripheral equipment, such as hard disks and letter

quality printers, and a need to access shared data bases, usually

in real time.

 It can truly be said that with today's semiconductor

technology, the Central Processing Unit (CPU) and it's memory are
the cheapest part of a modern data processing system. In fact,

hardware in general is becoming so inexpensive that the entire

thrust of system implementation is changing. Because software

costs are the largest part of any business computer installation

of any size, the requirements of the software become the prime

factors in the design and selection of the hardware. Thus, one
of the basic design criteria for new systems is to try to take
advantage of an existing body of software, while making available

the benefits of a new hardware technology.

 To this end, the NET/82 has been specifically designed to
support the largest body of microcomputer software available
today, the software which runs on 8080/8085/Z80 based computers.

Features have been incorporated which will allow a number of
different operating systems and applications software packages to

be supported. These features include bank switched memory,

 1-1

SECTION 1 (Continued) INTRODUCTION

floating point processor support, and full interrupt control.
All of these features are required for the most advanced systems,
but are either inexpensive or optional if they are not required

for a specific application. If you investigate the matchup
between your application and the features on the NET/82, or the
other boards in the same family, you will find exactly what you

need, proving that the MuSYS product line is the optimum hardware
selection for users desiring compatibility with existing

software, but needing greater throughput and flexibility than is

achievable with traditional single-processor hardware.

 The NET/82 is a complete computer on a single board, with
the exception that there is no provision for supporting local

disk devices. In the multi-processor architecture for which the

NET/82 is designed, disk operations are controlled by another

computer, which is accessed through a communications protocol of
some sort. Since the NET/82 is designed as an I/O mapped slave

according to the IEEE-696 specification for S-100 computers, the

usual communications method is to exchange data with the bus

master processor controlling the local S-100 bus. That processor

may, in turn, be part of a larger communications network, making

an almost unlimited amount of data and external devices available
to the user and software associated with an individual NET/82.

 Other uses are possible, using either the NET/82 or other
boards from the same family. Once a distributed processing

architecture has been established, large increases in overall
system throughput may be achieved by allocating individual
functions to individual processors. Thus, a processor may be

dedicated to running a single high-speed printer as an
intelligent print de-spooler, or it may run several slower

printers in the same manner. Other processors in the same box

may be acting as intelligent communications front-ends, providing
high-speed access to the peripherals in other boxes of various

1-2

SECTION 1 (Continued) INTRODUCTION

types. Still other processors may be dedicated to performing
various tasks which distribute the workload of the overall
system, such as background batch processing or data base

management. The real power of this architecture will only be
felt when the applications developers include provisions for
distributed processing within their applications. Some progress

in this direction is being made, with at least one major vendor
of data base management software announcing a multi-processor

data base management system which resides in one computer, while

servicing inquiry/update requests from data base users residing
in other computers.

 The NET/82 is designed to be a flexible, low cost, unit

computer, capable of being networked with other computers to meet

applications needs similar to those discussed above. Almost

anything achievable by computer is possible, if you only have
enough of these computers working in parallel. So the last part

of this discussion is a challenge to the user. Let us hear about

your novel and unique applications for these hardware building

blocks. If we feel there would be enough general interest, we

will see to it that your idea is published in an appropriate

place. Let your imagination run free, and the world will benefit.

 1-3

 SECTION 1 (Continued) INTRODUCTION

(This page was intentionally left blank)

1-4

SECTION 2 BOARD SET-UP

SECTION 2.0 - BOARD SET-UP AND INSTALLATION

 The NET/82 board will normally be delivered pre-configured
for the operating system environment you specified in your order.

Under these circumstances, the only set-up required is the

setting of the board address switches to the proper I/O address
for the next network processor board in your system. More
advanced users may require additional set-up, such as field

installation of optional features and re-jumpering of the various

jumper areas on the board. The purpose of this section is to
explain these various hardware options.

SECTION 2.1 - ADDRESS SWITCHES

 The address switches are comprised of sections 1 to 7 of the

switch SW1, which is located in the lower left hand part of the

board. The easiest way to set the switches is to turn the board
upside down so that the switches may be read in order, 1 to 7.

Switch 1 is the most significant bit (MSB) of the board address,

corresponding to address line 7 (A7) on the S-100 bus. Switch 7
is the least significant bit (LSB) of the board address,

corresponding to address line 1 (Al) on the S-100 bus. Only
seven switches are used because the NET/82 requires two I/O ports

out of the system address space, using address line 0 (AO) to
select between them.

 Each position of the switch is placed into a one or zero

state by pushing in on the appropriate end of the switch. Use a
small pointed object for this operation. When the switch is

closed (side next to the S-100 connector pushed in) a zero is

established for that bit position. When the switch is open (side
away from the S-100 connector pushed in) a one is selected for
that bit position.

 2-1

SECTION 2 (Continued) BOARD SET-UP

 You must determine the proper I/O port address required by
your operating system software. Once this is known, break it
down to the binary bits represented by bits A7 to Al of the

address. Then set each switch position, as described above.

 Below is a diagram of a switch set for address 70 hex, with
the sense switch (described below) in the open (one) position:

|1 2 3 4 5 6 7 8|
| | NOTE: An asterisk (*) denotes the switch
|* * * * | pushed in at that point.
| * * * *|
|-----OPEN------|

SECTION 2.2 - SENSE SWITCH

 Section 8 of the switch is the sense switch. The state of

this switch may be read by the software, and used to control

program execution, when used with the standard EPROM supplied by
MuSYS, the sense switch selects normal bootstrap mode, or board

diagnostic mode. Switch section 8 should be open for normal

operation, and closed to invoke diagnostics. Note that the sense
switch is wired in parallel with J2 pin 4, so that diagnostics
may also be invoked from an external source, such as a front

panel. Closing section 8 of the switch is equivalent to

grounding J2 pin 4, and either one will cause a low (zero) to be

sensed by the software.

SECTION 2.3 - INTERRUPT JUMPER AREA

 The interrupt jumper area is in the lower left-hand part of
the board, immediately to the left of the address switches. It
consists of eight sections of five pins each, with a section

corresponding to one of the eight vectored interrupt lines from

the S-100 bus. The sections are numbered from 0 to 7,

2-2

SECTION 2 (Continued) BOARD SET-UP

corresponding to VI0* to VI7*, with section 0 as the highest
priority and section 7 as the lowest, in fixed priority mode.
(See the section on interrupt controller programming).

 Each section has five pins, indicated as rows A through E on

the board. Rows A and C are local (on-board) interrupt sources.
Row B is the input to the interrupt controller chip. Row D
consists of signals which may be used to generate interrupts to

the S-100 bus. Row E is the S-100 interrupt lines, VI0* to VI7*.

The S-100 bus signals may be wired either as inputs (to the
interrupt controller, row B) or as outputs (normally from row D,

but the signals from rows A and C could also be used). The
signals are arranged so that the most likely connections may be

made using push-on jumpers, but wire-wrap wire may also be used,

as necessary. Below is a diagram of the interrupt jumper area:

A * * * * * * * *

 WRSTAT DIENA DOENA END12

B * * * * * * * *

 IREQ0 IREQ1 IREQ2 IREQ3 IREQ4 IREQ5 IREQ6 IREQ7

C * * * * * * * *

 WRD01 WRD02 WRD03 64PPS PERROR SVREQ END11 1PPS

D * * * * * * * *

 ---SB5--- ---SB6--- ---SB7--- -REQUEST-

E * * * * * * * *

 VI0 VI1 VI2 VI3 VI4 VI5 VI6 VI7

 0 1 2 3 4 5 6 7

 2-3

 SECTION 2 (Continued) BOARD SET-UP

 a. Interrupts Generated by the S—100 Bus Master. The
computer controlling the S-100 bus may generate a number of
interrupts to the NET/82 board. WRSTAT, DIENA, and DOENA are

generally used with the no-wait protocol (see the section on
inter-processor communication). WRSTAT is asserted when the bus
master writes a byte to the NET/82 Command/Status port. DIENA is

asserted when the master reads a byte from the NET/82 data port.
DOENA is asserted when the master writes a byte to the NET/82

data port.

 The remaining three signals are special cases of the WRSTAT

signal. In each case, WRSTAT is logically ended with the
appropriate data bit sent by the master in the byte output to the

NET/82 Command/Status port. Bits 1, 2, and 3 in the output byte

generate the signals WRD01, WRD02, and WRD03 respectively.

 b. Floating Point Processor Interrupts. If a floating

point processor is installed on the NET/82 board, it may be used
to generate interrupts when servicing is required or an operation

is complete. The signal SVREQ is a request for the next data

byte in a multiple byte transfer to or from the floating point

processor. The signals END11 and END12 are generated when the

operation is complete and the result is ready. END11 and END12

are opposite polarities of the same signal, and are provided for
compatibility with the two types of floating point processors
which are usable on the NET/82. The END11 signal is used for an

AMD 9511 or an Intel 8231. The END12 signal is used for an AMD
9512 or an Intel 8232.

 c. Other Local Interrupt Sources. The PERROR signal is
generated when the NET/82 memory parity checking circuitry

detects a parity error on a byte read from memory. This signal
may be used to initiate any appropriate software error recovery

procedures.

2-4

 SECTION 2 (Continued) BOARD SET-UP

 The signals 64PPS and 1PPS are generated from the third
channel of the 8253 timer chip, and will only be accurate as
shown when that channel is initialized to generate the 256Hz

square wave required for the hardware divider. This divider
takes the output of the 8253 and divides it by 4 to get the 64PPS
signal, and by 256 to get the 1PPS signal. If the 8253 is set

up for a rate other than 256Hz, the 1PPS and 64PPS signals will
change rates appropriately.

 d. Interrupts to the S-100 Bus. The signals REQUEST, SB5,
SB6, and SB7 are generated locally by the NET/82 if a one is

written into the appropriate bit of the local Command/Status
port. These signals will normally be used when the software in

the NET/82 desires to generate one of the signals VIO through VI7

to interrupt the master. However, since the signals VIO-7 may

also be interrupts into the NET/82, these signals may also be
used to interrupt another NET/82.

SECTION 2.4 - CLOCK JUMPER AREA

 There are four clock options on the NET/82. Each consists

of three pins which are part of the JA - RATE SELECT jumper area
located between the SIO and the 8253 (U42 and U41). The leftmost

three pins select the clock rate for the floating point processor
chip, U13. Connecting 1-2 selects a 4MHz clock rate while

connecting 2-3 selects a 2MHz clock rate. The rate selected must
be equal to or less than the maximum clock rate specified for the

floating point processor chip you have chosen.

 The remaining 9 pins of the JA - RATE SELECT jumper area are

used to select the input clock rate for the three channels of the
8253 programmable timer. Pins 4-6 are for channel 0 (the left
serial port, port A), pins 7-9 are for channel 1 (the right

 2-5

SECTION 2 (Continued) BOARD SET-UP

serial port, port B), and pins 10-12 are for channel 2 (the Real
Time Clock, which generates the 64PPS and 1PPS interrupt
signals). Since the maximum clock rate acceptable to the 8253 is

2.5MHz, the two clock sources are divided down to meet this
specification. Therefore, the left pin of each section is
2.4576MHz (4.9152MHz divided by 2) while the right pin is 2MHz

(8MHz divided by 4).

 The standard jumper option for JA - RATE SELECT is to have

each section jumpered left-to-center, selecting the 4MHz clock
for the floating point processor and the 2.4576MHz clock for the

8253 inputs. Starting with revision B of the NET/82 board, these
selections will be in the etch, and no jumper pins will be

provided. If it is necessary to change the configuration of a

revision B or later board, simply cut the etch (on the rear of

the board) which is connecting the left and center pads and wire
a jumper between the right and center pads.

SECTION 2.5 - EPROM SELECTION

 The NET/82 is supplied with a standard 2716 EPROM programmed

with the boot sequence for your operating system. This EPROM
also contains the diagnostic software which may be invoked by

asserting the sense line (J2 pin 4 or section 8 of SW1) to a zero
(low, or ground) state. If it is necessary to replace this

EPROM, please note that a device with an access time of 350ns or
faster is required in order to meet the timing requirements

during the M1 cycle of a 4MHz Z80A processor. There is no

provision in the NET/82 for generation of a wait state when the
EPROM is selected.

 Please note that the Texas Instruments 2716 EPROM is
incompatible with all of the other manufacturers of 2716s, and
may not be used with the NET/82. However, the Texas Instruments

2-6

 SECTION 2 (Continued) BOARD SET-UP

 2516 EPROM may be used in place of a 2716. Simply select 2716
 as the EPROM type for the NET/82.

 The other types of EPROMs which may be used are the 2532 and

 the 2732. The jumper areas for selecting the EPROM type are

 located immediately to the right of the EPROM itself (U44). Two
 jumpers are required, one on each area. Each jumper connects
 horizontally the two pins appropriate to the type of EPROM being

 used. The three selections are clearly labeled for 2716 (or

 2516), 2532, or 2732. Note that in all cases, the EPROM is
 decoded as a 4K byte address space. Changing the EPROM type

 selection does not affect the amount of memory overlaid by the
 EPROM. When a 2K byte EPROM (2516/2716) is used, it will appear

 twice at the bottom end of memory (addresses 0000H to 0FFFH).

 For revision B or later boards, the EPROM type has been

 selected in the etch as a 2716 (or 2516) type EPROM. If it is

 necessary to change the type of EPROM on these boards, cut the
 etch (on the rear of the board) and jumper the appropriate pads

 for the EPROM you intend to use.

SECTION 2.6 - ASYNCHRONOUS NULL-MODEM PADDLE BOARD JUMPERS

 As a standard feature, the NET/82 board is supplied with two

asynchronous null-modem paddleboards. These boards are designed

to interface the serial ports of the NET/82 to most standard
terminals or printers using standard 'straight through' cables.

This means that ribbon cables which wire all lines in parallel
are suitable for use with these boards. No interchange of pins 2

and 3, or any other special modification of the cable should be

required. Other types of paddle boards are available as options,
should you have special requirements.

 2-7

SECTION 2 (Continued) BOARD SET-UP

 The asynchronous null-modem paddleboard has three jumper
options. For purposes of this discussion, take the paddle board
and orient it so that the DB-25 (female) connector is pointing up

and the 16 pin header (male) is pointing toward you.

 Located immediately above pin 8 of the MC1489A (75188A) are
two pads. In most cases, these are left unconnected, as shipped
from the factory. However, if it is necessary to connect pin 1

of the RS-232 cable (frame ground) to the computer ground, it may

be done by connecting these two pads. Note that this should only
be done on advice from a competent individual, as it may impact

compliance with local electrical codes.

 To the right of the above area, and approximately above pins

1-6 of the 16 pin header, is the remote reset option jumper area.
In most cases, this will be wired center to left. Starting with

revision B of the paddle board, this area will be wired this way

in the etch, and it will be necessary to cut the etch on the rear
of the board in order to change the configuration of this area.

when wired center to right, the remote reset option is enabled.

Note that this is only effective for the paddleboard connected to

the left serial port (J3, port A) on the NET/82 board. The

remote reset option logically ties the computer's reset input to

the RS-232 pin selected by the third jumper area (see below).
Usually, that jumper area will be set up to select pin 19, and a
reset will be obtained by shorting RS-232 pins 18 and 19. Pin 18

is supplied as a current source (through a 1K resistor) for this
purpose. Whichever RS-232 pin is selected, the computer will be
reset when that line goes low (inactive, negative voltage).

Terminals which normally assert Data Terminal Ready on pin 20,
but which can cause pin 20 to go inactive under operator control,

may be used to initiate a reset in this manner. The IBM 3101 is

an example of such a terminal. In this case, pin 20 should be
selected below. Whichever pin is selected, a resistor on the

2-8

SECTION 2 (Continued) BOARD SET-UP

paddle board will pull that line up, ensuring that a powered-off
terminal will not hold the computer in a reset condition. Note
that the remote reset feature should only be used if the software

operating system has the ability to recover from a hardware reset
issued at any time. Otherwise, the processor may be unusable
after it has been reset.

 Further to the right, above and to the left of pin 14 of the

MC1488 (75188), is a six pin jumper area which is used to select

the handshake/reset pin. The middle two pins are common, and
should be wired to one of the four outside pins, usually using a

push-on jumper plug. The area may be used to select between pins
11, 14, 19, and 20 of the RS-232 cable. {Note that pin 11 is

only available on revision B and later versions of the paddle

board). Pin 11 is usually used for Texas Instruments 800 series

printers, and other compatible devices. Pin 14 is usually used
by Lear Siegler 300 series printers. Pin 19 is usually used by

NEC Spinwriter compatible printers. Pin 20 is usually used at

all other times. The area may be left completely open (no

jumper at all) with no effect, as a pull-up resistor is present

to ensure operation with an open cable. In such a situation, the

remote device appears as ready all of the time. Below is a
diagram of this jumper area:

 Pin 19 — > * * * <— Pin 20
 Pin 14 — > * * * <— Pin 11 (Rev. B or later)

 2-9

SECTION 2 (Continued) BOARD SET-UP

(This page was intentionally left blank)

 2-10

 SECTION 3 PROGRAMMING

 SECTION 3.0 - PROGRAMMING

 Normally, you will have received the software necessary to
 use your NET/82 either from MuSYS or another software vendor. If

 you are writing your own software for one or more of the features

 on the NET/82, this section will guide you in preparing that
 software. There are six devices which require programming:

 a. The Z80A-SIO/2, which supports 2 serial channels.

 b. The floating point processor.

 c. The 8253 Programmable Interval Timer (for baud rate and

 real-time-clock).

 d. The 9519 Interrupt Controller.

 e. The memory bank select logic.

 f. The Inter-Processor Communication Channel.

 Data sheets for the first four items, including both types

of floating point processors, appear in appendices in the back
of this manual. No attempt will be made here to explain the

detailed programming of these devices, beyond commenting on the
board dependent parameters of each of these chips. The memory

bank select logic and the Inter-Processor Communication channel

will be discussed in detail below.

 3-1

SECTION 3 (Continued) PROGRAMMING

SECTION 3.1 - I/O PORT ADDRESSES

 The I/O ports used on the NET/82 are listed below, with all
addresses in hexadecimal:

PORT DESCRIPTION

 00 SIO channel A, Data (J3, the left connector)

 01 SIO channel A, Command/Status
 02 SIO channel B, Data (J4, the right connector)

 03 SIO channel B, Command/Status

 08 Floating Point Processor, Data

 09 Floating Point Processor, Command/Status

 10 8253 Channel 0, Data (SIO channel A, baud rate)

 11 8253 Channel 1, Data (SIO channel B, baud rate)
 12 8253 Channel 2, Data (Real-Time-Clock interrupt)

 13 8253 Command

 18 Interrupt Controller, Data
 19 Interrupt Controller, Command/Status

 1D Memory Bank Select, Command

 1E Inter-Processor Communication, Data

 1F Inter-Processor Communication, Command/Status

SECTION 3.2 - INTERRUPT USAGE

 The NET/82 interrupt daisy chain contains only the SIO and

the 9519 interrupt controller. Due to the characteristics of the
SIO, only interrupt mode 2 is permissible.

3-2

SECTION 3 (Continued) PROGRAMMING

SECTION 3.3 - SIO PROGRAMMING

 The NET/82 uses the Z80A-SIO/2, which has symmetrical
pin-outs for channels A and B. (SYNCA is wired as a no-connect).

This means that both channels may be used in high baud rate

applications, which require separate clocks for transmit and
receive. The actual characteristics of the serial port are
determined by an external paddle board, which contains the logic

necessary to adapt the SIO pin-outs to a particular application.

The NET/82 is configured so that the Wait/Ready lines on the SIO
may be used in the Wait mode. This means that block I/O

instructions may be used for high baud rate applications. The
SIO is the highest priority device on the interrupt daisy chain.

The Z80 must be run in mode 2 when using the SIO in interrupt

mode. For further details on SIO programming, refer to the

appendix which contains the SIO data sheet.

SECTION 3.4 - FLOATING POINT PROCESSOR PROGRAMMING

 Normally, the floating point processor will be run in
programmed I/O mode, under control of the applications program.

Block I/O instructions to the floating point processor are
acceptable because the PAUSE* output is wired into the NET/82

wait state generator. If you are using interrupts with this
device, be sure that the interrupt selection {END11 or END12)

matches the type of chip you are using. The use of 4MHz parts is
highly recommended, as the increase in throughput more than makes

up for the slight increase in cost. After all, increased speed

is the reason for buying a floating point processor in the first
place. The appendicies contain data sheets on the two Intel 4MHz
devices (8231 and 8232). Refer to these for programming

information.

 3-3

SECTION 3 (Continued) PROGRAMMING

SECTION 3.5 - INTERVAL TIMER PROGRAMMING

 The 8253 Programmable Interval Timer is used primarily in

mode 4, as a square wave rate generator. Channel 0 generates the

clock signal for SIO channel A, channel 1 generates the clock for

SIO channel B, and channel 2 should generate a 256Hz signal to

drive the real-time-clock. The input clock rate for each channel
is selectable as either 2.000MHz or as 2.4576MHz (See section

2.4). Normally 2.4576MHz is used. The table below gives the

divisors for commonly used baud rates:

BAUD CLOCK
RATE RATE (16x) DIVISOR

-- 256HZ 9600 (For channel 3, RTC)

50 800Hz 3072

75 1200Hz 2048

110 1760.5Hz 1396 (slightly over speed)

134.5 2152HZ 1142

150 2400Hz 1024

300 4800Hz 512

600 9600HZ 256

1200 19.2KHz 128
1800 28.9KHz 85 (slightly over speed)

2000 31.9KHz 77 (slightly under speed)
2400 38.4KHz 64
3600 57.2KHz 43 (slightly under speed)

4800 76.8KHz 32
7200 117KHz 21 (somewhat over speed)
9600 153.6KHz 16

19.2K 307.2KHz 8

3-4

SECTION 3 (Continued) PROGRAMMING

SECTION 3.6 - INTERRUPT CONTROLLER PROGRAMMING

 The 9519 Interrupt Controller is the second, and final,
device on the interrupt daisy chain. Therefore, SIO interrupts

will take priority over 9519 interrupts. The hardware is

designed so that all interrupt inputs are asserted low, and are
pulled high when not active. It should never hurt to enable
interrupts which are not wired to anything. Since many interrupt

signals cannot be controlled by the NET/82 software, edge

triggered mode is generally called for. To simplify programming
of interrupt service routines, auto-clear is usually enabled for

all interrupting channels. The 9519 may be used with any Z80
interrupt mode, however, due to limitations in the SIO, mode 2

will normally be used. In any case, responses are limited to one

byte, as no logic exists on board to correct for multiple byte

interrupt acknowledge cycles. Selection of the interrupting
devices is covered in section 2.3, and actual programming of the

9519 is contained in a data sheet in an appendix.

SECTION 3.7 - MEMORY BANK SELECT PROGRAMMING

 The memory bank select circuitry offers one of the most
versatile bank switching schemes available today. The design is

based on the assumption that some smaller amount of memory (1K to
16K) must remain common (on all of the time), while a larger

amount of memory (48K - 63K) is switched. The switchable memory
is at the bottom of the address space, while the common memory is

measured from the top down. The dividing line between the common

and switchable memory is determined by software. The command
port for the bank select logic (port 1DH) takes an output byte
where the upper four bits (7-4)define the bank switching boundary

and the lower two bits (1-0)define which switchable bank, if
any, is to be switched on.

 3-5

 SECTION 3 (Continued) PROGRAMMING

 The table below defines the value sent to the upper four
 bits of the command port, the amount of switchable memory, and
 the first byte of un-switched memory, above the boundary:

 VALUE (bits 7-4} BANK UNSWITCHABLE

 (hex) SIZE BOUNDARY (hex)

 0 48K C000
 1 49K C400
 2 50K C800

 3 51K CC00

 4 52K D000
 5 53K D400

 6 54K D800

 7 55K DC00
 8 56K E000

 9 57K E400

 A 58K E800
 B 59K EC00

 C 60K F000

 D 61K F400

 E 62K F800

 F 63K FC00

 The table below defines the value sent to the lower two bits

of the command port, and the resulting bank which is selected:

VALUE BANK

 0 None
 1 0

 2 1

 3 Illegal (0 selected)

3-6

SECTION 3 (Continued) PROGRAMMING

SECTION 3.8 - INTER-PROCESSOR CHANNEL PROGRAMMING

 The inter-processor communication channel is the device
which makes the NET/82 useful in a multi-processor environment.

The NET/82 is designed with a special high-speed, discrete logic,

programmed I/O communication channel. This logic makes it
possible to transfer data at near the maximum speed possible with
Z80 block I/O instructions, ensuring coordination between

processors by generating wait states in the slave and

deliberately programming the master to execute slower than the
slave. This gives the fastest data transfer rates possible,

short of an expensive and unreliable DMA channel for each slave.

 Programming of the inter-processor channel is similar to the

programming used on the MuSYS NET/80™ board, for those familiar
with that product. Most of the concepts are the same, although

the detailed design has been considerably improved. In addition

to the normal mode of synchronized transfers, the NET/82 will
also support a no-wait protocol. The no-wait protocol allows one

byte at a time to be exchanged between processors, on an

interrupt driven basis. Also, when the no-wait protocol is in

effect, command bytes written to the command port by the master

are readable by the slave. This may be particularly useful if

the master sends a general interrupt, but wishes some specific
action to be taken. Your software may use either mode, or a
combination of them.

 While the following discussions are broken down into a

master and slave side view, you must realize that both sides have
to work together for the whole thing to work. It would be highly
beneficial for the same programmer to work on both sides of the

interface.

 3-7

SECTION 3 (Continued) PROGRAMMING

SECTION 3.8.1 - SLAVE SIDE PROGRAMMING

 The software running in the NET/82 sees two I/O ports when
communicating with the master. The data port (1EH) is eight bits

of read/write data, which are separately latched (in LS373s). An

output to the data port loads a byte into the output latch and an
input from the data port reads the contents of the input latch.
If no-wait protocol is not selected, accessing the data port for

either a read or write will cause the NET/82 to go into a wait

state until the master accesses the other side of the data port.
This wait-state protocol is the normal mode of operation.

 The command port (1FH) is a bit sensitive port which

receives a command byte from the NET/82 software. The bits are:

BIT FUNCTION

7,6,5 Arbitrary command bits. Readable by the master,
 usable as interrupts to the master (or other slaves).

 4 1 = No-Wait protocol, 0 = Wait-State Protocol (normal)

 3 Request bit. Same as arbitrary command bits, but

 usually used to indicate slave requests. Also can

 be read by the NET/82, which can look for it to clear.

NOTE: Bits 7 to 3 are clearable by the master.

 2 1 = Clear Overrun Status.

 1 1 = Clear Parity Error Status.

 0 1 = Enable EPROM at addresses 0000-0FFFH. (0 = disable)

3-8

SECTION 3 (Continued) PROGRAMMING

 The status port (1FH) is a bit sensitive port which
NET/82 software may read to determine the status of certain
signals. The bits are:

BIT FUNCTION

 7 0 = Ring, channel B (from certain modem paddle boards

 only).
 6 0 = Data Set Ready, channel B

 5 0 = Ring, channel A (see above)

 4 0 = Data Set Ready, channel A

 3 1 = Request set (echoes command port bit 3)

 2 1 = Overrun detected (see discussion on overrun)

 1 1 = Parity error detected

 0 0 = Sense switch closed (or J2 pin 4 grounded)

 The Data Set Ready and Ring signals will reflect the signals

presented to the NET/82 by the paddle board plugged into the

respective connectors, J3 for channel A, and J4 for channel B.
The request bit is readable in the status port so that the NET/82,

software may detect the fact that the master has cleared bits 3
to 7 of the command port. Overrun is discussed later. Parity

errors are detected by the memory parity circuitry if any byte is

read with even parity. Odd parity is always generated on memory
writes. The standard use of the sense switch is to invoke the
EPROM resident diagnostic package after a board reset. The EPROM
detects a zero in bit zero to start diagnostics.

 3-9

SECTION 3 (Continued) PROGRAMMING

 I/O transfers between the master and slave may be broken

down into three stages. The set-up stage establishes the

protocol and the direction of transfer. This stage normally uses

the bits in the command/status register to communicate with the

master. The transfer stage exchanges one or more bytes of data

between the processors in either the no-wait or wait-state mode.

The results stage checks the status and validates that an error

free transfer occurred. Normally, this means a check of the

overrun status, since the wait-state protocol is usually used.

 The NET/82 software must be written according to which

interrupts are to be used and what the overall protocol is. A

discussion of an example protocol appears later, after an

explanation of how the NET/82 appears to the master.

SECTION 3.8.2 - MASTER SIDE PROGRAMMING

 The software running in the S-100 bus master also sees two

I/O ports when communicating with the NET/82. The data port

(even) is eight bits of read/write data. Reads and writes to the

data port communicate with the other side of the LS373 latches

that the slave sees on it's data port. No wait state is ever

generated for the master, so the software in the master must be

written to execute slowly enough to properly communicate with the

NET/82. This may require some conditional assembly code to

customize according to processor speed in the master. This all

assumes the normal wait-state protocol. Where no-wait protocol

is used, processor synchronization is via flags or interrupts, so

there should be no sensitivity to processor speed variations.

3-10

SECTION 3 (Continued) PROGRAMMING

 The command port (write to odd) is a bit sensitive port
which receives a command byte from the master software. Only
the 4 least significant bits have meaning. These are defined as:

BIT FUNCTION

3 Clear bits 7-3 of the NET/82 local command register.

 (These bits appear in the status register, below).
 Also, generate the interrupt WRD03, if enabled.
2 Generate the interrupt WRD02, if enabled.

1 Generate the interrupt WRD01, if enabled.

0 1 = Reset the NET/82, 0 = Enable the NET/82 to run.

 The reset command bit is latched by an on-board flip/flop,
so the master must first output a one in the reset bit, wait for

a short delay, then output a zero to enable the NET/82 to run.

Note that a reset to the NET/82 may destroy some or all of the
dynamic memory contents. This would be especially true, if the

reset is left asserted for any length of time, as no refresh

signals are generated during reset. However, it is not unusual
for one byte to be destroyed by the reset itself due to aborting

a memory cycle in mid stream.

 The interrupt signals go to the interrupt jumper area on the

NET/82, where they may be fed into the 9519 interrupt controller.

The software in the NET/82 is responsible for setting up the
NET/82 so that interrupts are properly latched, recognized, and

processed. The signal WRD03, in addition to generating an
interrupt, will clear bits 7-3 of the NET/82 command register.

The NET/82 may monitor this action, and this may be used as part

of a communication protocol between the processors.

 3-11

SECTION 3 (Continued) PROGRAMMING

 The status port (read from odd) is a bit sensitive port
which the master software may read to determine the status of an
individual NET/82 board. The bits are:

BIT FUNCTION

7,6,5 Arbitrary command bits, from the NET/82 local command

 register (slave I/O port 1FH).

4 1 = No-Wait protocol, 0 = Wait-State protocol (normal)

3 Request Bit. Same as arbitrary command bits, but

 usually used to indicate slave requests.

N0TE: Bits 7 to 3 may be cleared by the master by issuing the

 appropriate command bit (see above).

2 1 = Overrun detected (see discussion on overrun)

1 Read Hold. The NET/82 is in a wait state, waiting for

 the master to write to it.

0 Write Hold. The NET/82 is in a wait state, waiting for
 the master to read from it.

 Bits seven through two are discussed elsewhere. The two

hold status signals indicate that the slave has stopped, waiting
for the master to read or write a byte to the data port.

Normally this occurs just prior to and during an actual data

transfer operation. However, the NET/82 may be left in this
state for an indefinite period of time, since memory refreshing
will occur. When in hold, no other operations occur in the
NET/82, such as interrupt servicing or other processing.

3-12

SECTION 3 (Continued) PROGRAMMING

SECTION 3.8.3 - OVERRUN

 Overrun status is set on a NET/82 board whenever the master
processor accesses the NET/82 data port (even) and the slave is

not in a hold state (read or write). Since this is the essence

of no-wait protocol, overrun status must be ignored when no-wait
protocol is being used. Alternatively, the slave could use the
overrun indication as part of the handshaking which shows that

the master had in fact accessed the data port.

 In normal operation, overrun is a fatal error condition, as

the normal protocol specifies that the slave must be in the hold
condition when the master is sending or receiving a data byte.

For programming with 4MHz Z80A processors, the slave will usually

do an INIR or OTIR instruction (block I/O), while the master will
use a short loop consisting of NOP, OTI (or INI), and JNZ back.

The extra NOP instruction and jump time is enough to ensure that

the slave must wait for the master, no matter the slight
variation in processor clock speeds. For other types and speeds

of master processors, the protocol may be determined by

calculation or empirically, as long as some slop is allowed for

variations in individual processor boards.

 While the overrun status bit may be read by either the
master or the slave, only the slave may clear it, unless the

master performs a total reset of the slave. Conversely, only the
master, may set overrun, by accessing the data port as described

above. Note that while the logic does detect timing problems,

protocol problems must be detected by the master processor status
read operation. The overrun logic does not get set if the master
and slave are either both reading and both writing. Therefore

the master should check for the type of hold (read or write) as
part of the beginning of any slave I/O operating.

 3-13

SECTION 3 (Continued) PROGRAMMING

SECTION 3.8.4 – PROTOCOLS

 Protocols are the province of the system software designer,
and any discussion of this subject should be taken as guidance,

rather than hard rules. Therefore, let us examine a typical

protocol.

 For a discussion of the typical protocol, we must abandon
the master/slave vocabulary associated with the S-100 interface,
and adopt the requestor/server nomenclature mo-re typical in a

network environment. In this context, the NET/82 normally

operates as requestor and the S-100 bus master normally operates
as server. To initiate a request, the NET/82 would set the

request bit in the local command port. He could then go on

executing, servicing interrupts, or whatever, until the request
was ready to be processed. This could be as simple as polling

the request bit, waiting for it to go away in response to an

external clear command, or it could involve an interrupt service
routine of some type. However, nothing prevents the NET/82 from

going directly to read or write hold, as necessary. Once the

request is recognized, the NET/82 will go into write hold to

transfer some of request descriptor block describing the

transaction which is desired. This will then be followed, at an

appropriate interval, by a read or write of the data, if
necessary. Again, interrupts may optionally be used to initiate
the second portion of the data transfer operation, especially if

a disk operation must take place. Finally, both sides would
check status and initiate error recovery, if appropriate.

 One word of caution. If a server handles more than one
requestor, it should be programmed such that no-erroneous

operation of one requestor will crash the system. This implies
timeout checks on any loop which waits on the NET/82.

3-14

NULL MODEM PADDLEBOARD

 The MuSYS Corp. Null Modem Paddleboard is designed to interface the

NET-81/82 family of computer boards to a terminal or printer via a

standard RS-232-C serial communications link. When used, the system

becomes an effective "DCE" device, and may communicate directly with any

standard "DTE" device.

 The RS-232-C lines recognized are:

 1 FG Frame Ground (optional)

 2 TxD Transmitted Data .

 3 RxD Received Data

 5 CTS Clear To Send

 6 DSR Data Set Ready

 7 SG Signal Ground

 8 DCD Data Carrier Detect

 11 — (Optional DTR)

 14 — (Optional DTR)

 18 — Reset Output (non-standard signal)

 19 — (Optional DTR, optional Reset Input)

 20 DTR Data Terminal Ready (optional)

 There are three jumper areas used to select the above listed

options. Looking at the component side of the board with the DB25

connector up: JA-1 is the two pads in the upper left, this area is not

normally equipped with jumper pins; JA-2 is the two-pin jumper area in

the lower right; and JA-3 is six-pin jumper area in the upper right.

JA-3 is depicted in Figure 1. The options involved are:

 JA—1: When open, pin 1 (FG) is floating.

 When jumped, pin 1 (FG) connects to ground.

 JA-2 When open, remote manual reset is disabled.

 When jumped, shorting pin 18 to pin 19 causes reset. When

 this option is used, pin 19 may not be DTR.

 JA-3 (See figure 1)

 When open, DTR is always active.

 When B-D jumped, DTR is pin 20 (normal).

 When C-E jumped, DTR is pin 19 (NEC Spinwriter types).

 When D-F jumped, DTR is pin 14 (Lear Slegler types).

 When A-C jumped, DTR is pin 11 (TI-810 types).

 11 | A | B | 20

 |---|---|

 COM | C | D | COM FIGURE 1

 |--- ---|

 19 | E | F | 14
